\(\int \frac {\cos ^2(c+d x) (A+C \cos ^2(c+d x))}{(b \cos (c+d x))^{5/2}} \, dx\) [82]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 78 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\frac {2 (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 C \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b^3 d} \]

[Out]

2/3*(3*A+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(
1/2)/b^2/d/(b*cos(d*x+c))^(1/2)+2/3*C*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/b^3/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {16, 3093, 2721, 2720} \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\frac {2 (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b^3 d} \]

[In]

Int[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/(b*Cos[c + d*x])^(5/2),x]

[Out]

(2*(3*A + C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*b^2*d*Sqrt[b*Cos[c + d*x]]) + (2*C*Sqrt[b*Cos[c
+ d*x]]*Sin[c + d*x])/(3*b^3*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 3093

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos
[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[(A*(m + 2) + C*(m + 1))/(m + 2), Int[(b*Sin[e +
f*x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {A+C \cos ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx}{b^2} \\ & = \frac {2 C \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b^3 d}+\frac {(3 A+C) \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx}{3 b^2} \\ & = \frac {2 C \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b^3 d}+\frac {\left ((3 A+C) \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b^2 \sqrt {b \cos (c+d x)}} \\ & = \frac {2 (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 C \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b^3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.78 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\frac {2 (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+C \sin (2 (c+d x))}{3 b^2 d \sqrt {b \cos (c+d x)}} \]

[In]

Integrate[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/(b*Cos[c + d*x])^(5/2),x]

[Out]

(2*(3*A + C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + C*Sin[2*(c + d*x)])/(3*b^2*d*Sqrt[b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(238\) vs. \(2(94)=188\).

Time = 7.94 (sec) , antiderivative size = 239, normalized size of antiderivative = 3.06

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 b^{2} \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(239\)
parts \(-\frac {2 A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{b^{2} \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}-\frac {2 C \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 b^{2} \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(336\)

[In]

int(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)/b^2*(4*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^
4+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-2*C*
cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipt
icF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/(
(2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.18 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\frac {\sqrt {2} {\left (-3 i \, A - i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (3 i \, A + i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} C \sin \left (d x + c\right )}{3 \, b^{3} d} \]

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-3*I*A - I*C)*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(3*I*A
 + I*C)*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*sqrt(b*cos(d*x + c))*C*sin(d*x +
 c))/(b^3*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**2*(A+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^2/(b*cos(d*x + c))^(5/2), x)

Giac [F]

\[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^2/(b*cos(d*x + c))^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2\,\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((cos(c + d*x)^2*(A + C*cos(c + d*x)^2))/(b*cos(c + d*x))^(5/2),x)

[Out]

int((cos(c + d*x)^2*(A + C*cos(c + d*x)^2))/(b*cos(c + d*x))^(5/2), x)